Conversion of Cholic Acids into Aza Steroids

Jason Hill, ${ }^{a}$ James K. Sutherland ${ }^{*, a}$ and Patrick Crowley ${ }^{b}$
${ }^{a}$ Chemistry Department, Victoria University of Manchester, M13 9PL, UK
b ICI Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire, RG12 6EY, UK

Cholic and chenodeoxycholic acids have been transformed into analogues of the anti-fungal aza steroid A25822A via the 8(14)-ene and 8,14-diene derivatives.

The A25822 group of fungal metabolites isolated and characterised by the Lilly group ${ }^{1}$ have been shown to exhibit antifungal activity under certain circumstances. ${ }^{2}$ This activity has been traced to their inhibition of the 14-ene hydrogenation step of sterol biosynthesis. ${ }^{3}$ At the inception of our work the only synthetic studies published were those of the Barton group ${ }^{4}$ who prepared the aza steroid 1 from ergosterol. Since then Dolle and Kruse have described a synthesis of the 4,4-dimethyl compound. ${ }^{5}$

1

$2 X=O A c, R=O M e$
$3 X=H, R=P \mathbf{r}^{i}$
$4 X=H, R=O M e$
$5 X=H, R=O H$
$6 X=H, R=O A c$
We wished to investigate whether cholic \dagger acid could be used as a source of aza steroids of this type. The Fetizon group ${ }^{6}$ has described the conversion of methyl $3 \alpha, 12 \alpha$-diacetoxychol-8(14)-en- 24 -oate into the 8,14 -diene 2 by reaction with $\mathrm{Bu}^{t} \mathrm{OOH}-$ SeO_{2} and its further transformation into the 14-hydroxy-15-oxo compound. Since the preparation of this ketone proved to be capricious \ddagger and cleavage of ring D difficult we turned to reaction of the diene 2 with $\mathrm{OsO}_{4}-\mathrm{Me}_{3} \mathrm{NO}$ which gave a 1:1 mixture of 14,15 -diols (80%). Oxidation with NaIO_{4} gave the ketoaldehyde 7 (90%).
Reaction of the aldehyde 7 with $\mathrm{NH}_{3}-\mathrm{MeOH}$ gave a variety of products from which the carbinolamine $8(30 \%)$ could be isolated. The presence of the unsaturated imine was confirmed by the shift of $\lambda_{\text {max }}$ from $242 \mathrm{~nm}(\varepsilon 10300)$ to $282 \mathrm{~nm}(\varepsilon 10100)$ on acidification. Attempts to reduce the carbinolamine 8 to the

[^0]

7

$8 \mathrm{X}=\mathrm{OH}$
$9 \mathrm{X}=\mathrm{H}$
azasteroid 9 with $\mathrm{NaBH}_{3} \mathrm{CN}$ were unsuccessful, the allylamine 10 being obtained (92%). Direct oxidation of the amine 10 with $\mathrm{Hg}(\mathrm{OAc})_{2}$ or $\mathrm{Pb}(\mathrm{OAc})_{4}$ failed to form the azomethine, but the two step process ${ }^{7}$ of N -chlorination with $\mathrm{Bu}^{t} \mathrm{OCl}$ followed by dehydrochlorination with DBU § formed compound $9(84 \%){ }^{8}$

10

Now that we had developed a method for the construction of the aza compound we endeavoured to apply it to a target more closely related to the natural products. The starting material was chenodeoxycholic acid 4 which was converted to the 8(14)ene apo compound using the conditions previously described; however in this case the 8(14)-ene isomer was contaminated with the 7 -ene compound. $\|$ After acetylation exposure of the mixture to $\mathrm{Pt}-\mathrm{H}_{2}$ converted it to pure 8(14)-ene material 11. Reaction of the acid with $(\mathrm{COCl})_{2}$ formed the acid chloride which was treated with $\mathrm{Pr}^{1} \mathrm{MgCl}-\mathrm{CuCN}$ to give ketone 12. Attempts to transform the enone into the 8,14-diene 3 using

[^1]
$11 \mathrm{R}=\mathrm{OH}$
$12 R=P r^{i}$

$13 X=0$
$14 X=H, O H$
$15 X=H, B r$
$16 X=H, N_{3}$

$17 X=O H, Z=0$
$18 \mathrm{X}=\mathrm{H}, \mathrm{Z}=\mathrm{O}$
$19 \mathrm{X}=\mathrm{H}, \mathrm{Z}=\mathrm{CH}_{2}$
$\mathrm{Bu}^{{ }^{\prime} \mathrm{OOH}-\mathrm{SeO}_{2}}$ gave intractable materials, presumably due to interference by the side-chain ketone. Thus it was decided to introduce the diene first and then complete the side-chain. The known diene ester 4 was hydrolysed to the acid and acetylated with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine. On aqueous work-up the acid 5 was obtained, but the bulk of the material from the reaction was present as the mixed anhydride 6. It was possible to hydrolyse the anhydride selectively, but in poor yield; however the anhydride could be converted into the acid chloride using $(\mathbf{C O C l})_{2}$. Reaction of the acid chloride with $\operatorname{Pr}^{i} \mathbf{M g C l}-\mathrm{CuCN}$ gave the ketone 3.
The results of $\mathrm{OsO}_{4}-\mathrm{Me}_{3} \mathrm{NO}$ oxidation of the diene 3 were disappointing since the 14,15 -diol was obtained in poor yield, the major product being an unidentified ether. Stoichiometric OsO_{4} oxidation gave the 14,15 -diol (28%) which proved to be unstable.* We next turned to selective ozonolysis which had been used by Dolle and Kruse ${ }^{5}$ in a similar situation. Reaction of the diene with O_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ followed by reduction of the reaction mixture with $\mathrm{Zn}-\mathrm{AcOH}$ gave the ketoaldehyde $13(23 \%)$ which was treated with NH_{3} to form the carbinolamine $17(25 \%)$. Reduction of the carbinolamine 17 as before gave the allylamine (29%). This succession of poor yields caused us to examine other routes from the ketoaldehyde to the imine. Dolle and Kruse ${ }^{5}$ had converted their ketoaldehyde to primary alcohol and thence to the unsaturated imine using $(\mathrm{PhO})_{2} \mathrm{PON}_{3}-\left(\mathrm{Pr}^{\mathrm{i} O C O N}\right)_{2}-\mathrm{Ph}_{3} \mathrm{P}$ in

[^2]an aza-Wittig reaction. The ketoaldehyde was reduced with $\mathrm{Bu}^{t} \mathrm{NH}_{2}-\mathrm{BH}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the alcohol 14 (54%) but all attempts to form the imine 18 in one step failed so a well established route was adopted. Reaction of the alcohol with $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{N}$-bromosuccinimide gave the bromide $15(90 \%)$ which with $\mathrm{NaN}_{3}-\mathrm{Me}_{2} \mathrm{NCHO}$ formed the azide $16(100 \%)$; reduction of 16 with H_{2}-Lindlar catalyst gave the imine $18(64 \%)$. The synthesis was completely by Wittig reaction of 18 with $\mathrm{CH}_{2} \mathrm{PPh}_{3}$ to give the analogue 19.

Experimental

NMR spectra were measured in CDCl_{3} at 300 MHz (J values in Hz), IR spectra as thin films, and UV spectra in EtOH. 'Usual work-up' implies extractions with an organic solvent, washing the combined extracts with brine, drying the organic solvent over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentration of the extract under reduced pressure.

Oxidation of Methyl $3 \alpha, 12 \alpha$-Diacetoxy- 5β-chola-18,14-dien-24-oate 2. - $\mathrm{OsO}_{4}(50 \mathrm{mg})$ in $\mathrm{Bu}^{t} \mathrm{OH}\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of the diene $2(383 \mathrm{mg})$ and $\mathrm{Me}_{3} \mathrm{NO}(103 \mathrm{mg})$ in $\mathrm{Bu}{ }^{t} \mathrm{OH}\left(20 \mathrm{~cm}^{3}\right)$, water $\left(5 \mathrm{~cm}^{3}\right)$ and pyridine ($1.2 \mathrm{~cm}^{3}$) at ambient temperature under N_{2}. After 1 h aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (20%) was added to the dark red solution. Extraction with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~cm}^{3}$) followed by work-up in the usual way gave a green oil which was chromatographed on SiO_{2}; elution with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)-EtOAc (1:1) gave the $14,15-$ diols (340 mg) as a glass.

The diols (310 mg) and $\mathrm{NaIO}_{4}(400 \mathrm{mg}$) were dissolved in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ and water ($10 \mathrm{~cm}^{3}$) and the solution left at ambient temperature for 3 h . A white precipitate formed which dissolved on the addition of water ($50 \mathrm{~cm}^{3}$) and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 40 \mathrm{~cm}^{3}\right)$. Work-up in the usual way gave an oil which solidified on trituration with light petroleum. Recrystallisation from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ gave the ketoaldehyde 7 ($298 \mathrm{mg}, 90 \%$), m.p. $137-141^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 9.66(1 \mathrm{H}, \mathrm{s})$, $5.16(1 \mathrm{H}, \mathrm{q}), 4.78(1 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}$, $\mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s})$ and $0.84(3 \mathrm{H}, \mathrm{d}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1735$, 1666 and 1624; $\lambda_{\text {max }} / \mathrm{nm} 248$ ($\varepsilon 8500$) (Found: C, 66.9; H, 8.1. $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{8}$ requires C, $67.2 ; \mathrm{H}, 8.1 \%$).

Reaction of Methyl $3 \alpha, 12 \alpha$-Diacetoxy-14,15-dioxo-14,15-seco5β-chola-8,14-dien-24-oate 7 with NH_{3}.-Aqueous ammonia (d $0.880 ; 0.1 \mathrm{~cm}^{3}$) was added to the aldehyde $7(55 \mathrm{mg})$ in MeOH ($1.5 \mathrm{~cm}^{3}$). After 8 h water $\left(20 \mathrm{~cm}^{3}\right)$ was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Concentration of the dried extract gave an oil which was chromatographed on SiO_{2}; elution with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)-EtOAc (1:1) gave the carbinolamine $8(16 \mathrm{mg}, 30 \%)$; $\delta_{\mathrm{H}} 5.32(1 \mathrm{H}, \mathrm{m}), 5.10(1 \mathrm{H}$, q), $4.80(1 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 1.10$ ($3 \mathrm{H}, \mathrm{s}$) and $0.86\left(3 \mathrm{H}\right.$, d) (Found: $\mathrm{M}^{+}, 517.3041 . \mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{7}$ requires $M, 517.3036$).

Reduction of Methyl 3 $\alpha, 12 \alpha$-Diacetoxy-16-hydroxy-15-aza-17a-homo- 5β-chola-8,14-dien-24-oate 8.- $\mathrm{NaBH}_{3} \mathrm{CN}(10 \mathrm{mg})$ was added to the carbinolamine $8(16 \mathrm{mg})$ in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$. After 1 h the mixture was diluted with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The extract was washed with aqueous NaHCO_{3}, dried and concentrated to give the amine 10 as an oil (15 mg); $\delta_{\mathrm{H}} 0.81(3 \mathrm{H}, \mathrm{d}), 0.86(3 \mathrm{H}, \mathrm{s}), 1.00$ ($3 \mathrm{H}, \mathrm{s}$), $2.00(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 3.25(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s})$, $3.80(1 \mathrm{H}, \mathrm{m}), 4.76(1 \mathrm{H}, \mathrm{m})$ and $5.22(1 \mathrm{H}, \mathrm{d})$ (Found: M^{+}, 503.3245. $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{6}$ requires $M, 503.3243$).

Methyl 3a,12 α-Diacetoxy-5-aza-17a-homo-5 β-chola-8,14-di-en-24-oate 9.- $\mathrm{Bu}^{\prime} \mathrm{OCl}$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}, 1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ was added to the amine $\mathbf{1 0}(5 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$. After 1 h in $\mathrm{Et}_{2} \mathrm{O}(10$
cm^{3}) was added and after washing with aqueous NaHCO_{3} the dried solution was concentrated to give the N -chloro compound (5 mg). This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right.$) and DBU (50 cm^{3}) added. After $30 \mathrm{~min} \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added and the solution worked up in the usual way to give an oil which was chromatographed on SiO_{2}; elution with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)-EtOAc (1:1) gave the imine $9(4 \mathrm{mg})$ as an oil; $\lambda_{\text {max }} / \mathrm{nm} 242$ ($\varepsilon 10300$); $\lambda_{\text {max }}+\mathrm{H}^{+} / \mathrm{nm} 282(\varepsilon 10100)$ (Found: $\mathrm{M}^{+}, 501.3091 . \mathrm{C}_{29} \mathrm{H}_{43} \mathrm{NO}_{6}$ requires $M, 501.3088$).
3α-Acetoxy- 5β-chol-8(14)-en-24-oic Acid 11.-Apochenodeoxycholic acid (9.36 g) in $\mathrm{AcOH}\left(150 \mathrm{~cm}^{3}\right)$ containing $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($0.5 \mathrm{~cm}^{3}$, conc.) and $\mathrm{Ac}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right.$) was stirred at room temp. for 4 h . The reaction mixture was then poured into EtOAc (200 cm^{3}) and worked up in the usual way, to give an orange solid (11.03 g). SiO_{2} column chromatography (35% EtOAc-hexane; 7:13) gave the acetates as pale yellow crystals. The acetates in $\mathrm{AcOH}\left(50 \mathrm{~cm}^{3}\right.$) containing PtO_{2} were shaken under an H_{2} atmosphere for 24 h . The Pt was filtered off and the filtrate evaporated to give the pure (14)-ene acid 11 (7.21 g), m.p. 120$124{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}+57$ ($c 1.0$); $v_{\text {max }} / \mathrm{cm}^{-1} 2940,2870,1740$ and $1710 ; \delta_{\mathrm{H}} 4.75(1 \mathrm{H}, \mathrm{m}), 2.0(3 \mathrm{H}, \mathrm{s}), 1.0(3 \mathrm{H}, \mathrm{d}), 0.85(3 \mathrm{H}, \mathrm{s})$, $0.8(3 \mathrm{H}, \mathrm{s})$ (Found: C, $75.3 ; \mathrm{H}, 10.0 \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4}$ requires C, 75.0 ; $\mathrm{H}, \mathbf{9 . 6 \%}$).
$3 x$-Acetoxy- 5β-cholest-8(14)-en-24-one 12.- $(\mathbf{C O C l})_{2} \quad(168$ mm^{3}) was added to a stirred solution of the acid $11(410 \mathrm{mg})$ in $\mathrm{PhMe}\left(20 \mathrm{~cm}^{3}\right)$ at room temp. Once effervescence had stopped the orange solution was evaporated to give the acid chloride $(405 \mathrm{mg})$ as an orange solid, $v_{\text {max }} / \mathrm{cm}^{-1} 1740$.
$\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl}$ in $\mathrm{Et}_{2} \mathrm{O}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 9.2 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of CuCN (817 mg) in tetrahydrofuran (THF) (40 cm^{3}) under N_{2} at $-78^{\circ} \mathrm{C}$. The solution was then warmed to $0^{\circ} \mathrm{C}$. When clear, the solution was recooled to $-78^{\circ} \mathrm{C}$ and the acid chloride (2.055 g) in THF ($10 \mathrm{~cm}^{3}$) was added. The mixture was stirred for 15 min and then $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ added at $-78^{\circ} \mathrm{C}$. After the mixture had warmed to room temp. $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ and water ($100 \mathrm{~cm}^{3}$) were added and the resulting suspension was filtered through Celite. Work-up in the usual way followed by SiO_{2} column chromatography (hexaneEtOAc; 9:1) furnished the ketone 12 (1.449 g); m.p. 95-97 ${ }^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{\mathrm{D}}+72(c 1.2) ; v_{\max } / \mathrm{cm}^{-1} 1740$ and $1715 ; \delta_{\mathrm{H}}$ $4.7(1 \mathrm{H}, \mathrm{m}), 2.0(3 \mathrm{H}, \mathrm{s}), 1.05(6 \mathrm{H}, \mathrm{d}), 0.9(3 \mathrm{H})$ and $0.8(3 \mathrm{H})$; $m / z 442$ (Found: $\mathrm{C}, 79.1 ; \mathrm{H}, 10.7 . \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.7 ; \mathrm{H}$, 10.4%).
3α-Hydroxy-5 β-chola-8,14-dien-24-oic Acid.-LiOH (1 g) was added to a stirred solution of the diene $4(2.03 \mathrm{~g})$ in AnalaR $\mathrm{MeOH}\left(90 \mathrm{~cm}^{3}\right)$ and water $\left(30 \mathrm{~cm}^{3}\right)$ at room temp. After 48 h a white precipitate had formed and the suspension was acidified with $\mathrm{HCl}\left(3 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ to pH 2 . The precipitate was then filtered off, washed with water $\left(4 \times 50 \mathrm{~cm}^{3}\right)$ amd dried to give the acid (1.625 g); m.p. $149-151^{\circ} \mathrm{C}\left(\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}\right)$; $[\alpha]_{\mathrm{D}}-20$ (c 2.0); $\lambda_{\text {max }} / \mathrm{nm} 247(\varepsilon 17125) ; v_{\text {max }} / \mathrm{cm}^{-1} 3600-2450$ and $1710 ; \delta_{\mathrm{H}} 5.3$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $3.65(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{d})$ and 0.8 ($3 \mathrm{H}, \mathrm{s}$); m/z 372.
3α-Acetoxy-5 β-chola-8,14-dien-24-oic Acid 5-- $\mathrm{Ac}_{2} \mathrm{O}$ (60 cm^{3}) was added dropwise to a stirred solution of 3α-hydroxy5β-chol-8,14-dienoic acid (202 mg), pyridine ($0.5 \mathrm{~cm}^{3}$) and DMAP* (20 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. After 3 h the reaction mixture was diluted further with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and washed with water ($3 \times 30 \mathrm{~cm}^{3}$). Work-up in the usual way gave a pale yellow oil, purified by SiO_{2} column chromatography (EtOAchexane $3: 7$) to give the acid $5(52 \mathrm{mg})$ as a colourless oil;

[^3]$\lambda_{\max } / \mathrm{nm} 246(\varepsilon 17100) ; v_{\max } / \mathrm{cm}^{-1} 3400-2600 ; \delta_{\mathrm{H}} 5.3(1 \mathrm{H}$, s), $4.7(1 \mathrm{H}, \mathrm{m}), 2.0(3 \mathrm{H}, \mathrm{s}), 1.1(3 \mathrm{H}, \mathrm{s}), 1.0(3 \mathrm{H}, \mathrm{d})$ and 0.85 ($3 \mathrm{H}, \mathrm{s}$); $m / z 414$.
3α-Acetoxy- 5β-cholesta-8,14-dien-24-one 3.-Pyridine (6 cm^{3}) was added dropwise to a stirred suspension of 3α-hydroxy5β-chola-8,14-dienoic acid (1.6 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ at room temp. $\mathrm{Ac}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was then added once the suspension had dissolved. After 1.5 h the solution was washed with saturated aqueous NaHCO_{3} and worked up in the usual way to give a colourless oil. This material was then dissolved in PhMe (30 cm^{3}) and $(\mathrm{COCl})_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added. Once effervescence had stopped, evaporation yielded the crude acid chloride (1.792 g) as orange crystals.
$\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{Et}_{2} \mathrm{O} ; 8 \mathrm{~cm}^{3}$) was added to a stirred suspension of $\mathrm{CuCN}(716 \mathrm{mg})$ in THF $\left(40 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The mixture was warmed to $0^{\circ} \mathrm{C}$ and upon dissolution of all the material was cooled to $-78^{\circ} \mathrm{C}$; a solution of the acid chloride (1.792 g) in THF ($10 \mathrm{~cm}^{3}$) was then added. After $15 \mathrm{~min} \mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ was added at $-78^{\circ} \mathrm{C}$ and the mixture warmed to ambient temperature. $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ and water ($100 \mathrm{~cm}^{3}$) were added and the mixture filtered through Celite. Work-up in the usual way gave an oil, purified by SiO_{2} chromatography (EtOAc-hexane 1:10) to give the ketone 3 (1.515 g) m.p. $66-67^{\circ} \mathrm{C}$ (hexane); $\lambda_{\text {max }} / \mathrm{nm} 247$ ($\varepsilon 17300$); $v_{\text {max }} / \mathrm{cm}^{-1} 1735$ and $1715 ; \delta_{\mathrm{H}} 5.3(1 \mathrm{H}, \mathrm{s}), 4.7(1 \mathrm{H}, \mathrm{m}), 2.0$ $(3 \mathrm{H}, \mathrm{s}), 1.1(3 \mathrm{H}, \mathrm{s}), 1.05(6 \mathrm{H}, \mathrm{d}), 0.9(3 \mathrm{H}, \mathrm{d})$ and $0.8(3 \mathrm{H}, \mathrm{s})$ (Found: C, 79.5; H, 10.4. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}$ requires $\mathrm{C}, 79.1 ; \mathrm{H}, 10.0 \%$).

Ozonolysis of the Diene 3.--The ketone 3 (1.4 g) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($350 \mathrm{~cm}^{3}$) containing Sudan III (5 mg) was cooled to $-78{ }^{\circ} \mathrm{C}$ and O_{3} passed until the solution was colourless. Zn dust (10 g) and $\mathrm{AcOH}\left(30 \mathrm{~cm}^{3}\right.$) were then added and the mixture warmed to ambient temp. After 2 h the mixture was filtered and the filtrate concentrated to give an oil, which was chromatographed ($\mathrm{SiO}_{2}, 1: 3 \mathrm{EtOAc}$-light petroleum) to give the ketoaldehyde 13 (368 mg), $\lambda_{\text {max }} / \mathrm{nm} 250$ ($\varepsilon 10200$); $v_{\text {max }} / \mathrm{cm}^{-1} 1730,1655$ and $1620 ; \delta_{\mathrm{H}} 9.6(1 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{m})$, $2.00(3 \mathrm{H}, \mathrm{s}), 1.10(6 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s})$ and $0.90(3 \mathrm{H}, \mathrm{d}) ; m / z$ 490 and 472.

Reduction of 3α-Acetoxy-14,15-seco- 5β-cholest-8-ene-14,15,-24-trione 13.-To a stirred solution of trione $13(475 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C} \mathrm{Bu}^{\prime} \mathrm{NH}_{2}-\mathrm{BH}_{3}$ was added. After 1 h $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{~cm}^{3}\right)$ was added followed by work-up in the usual way to give an oil which on SiO_{2} column chromatography (EtOAc-light petroleum, 1:1) furnished the alcohol 14 (275 mg) as a colourless oil, $\lambda_{\text {max }} / \mathrm{nm} 250 ; v_{\text {max }} / \mathrm{cm}^{-1} 3480,1735$ and 1710; $\delta_{\mathrm{H}} 4.7(1 \mathrm{H}, \mathrm{m})$ and $3.35(2 \mathrm{H}, \mathrm{m})$.

3 α-Acetoxy-16-hydroxy-15-aza-17a-homo-5 β-cholesta-8,14-diene-24-one 17.-To a stirred room temp. solution of the trione 13 (71 mg) in AnalaR $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right) \mathrm{NH}_{3}(d 0.88)$ was added dropwise until no starting material remained. The solution was then poured into water ($100 \mathrm{~cm}^{3}$) and worked up in the usual way to give a pale yellow brown oil (60 mg), which on SiO_{3} column chromatography (EtOAc-hexane, 4:6) furnished the carbinolamine 17 (16 mg) as a colourless oil, $\lambda_{\text {max }} / \mathrm{nm} 243(\varepsilon 14600), \lambda_{\text {max }}+\mathrm{H}^{+} / \mathrm{nm} 280(\varepsilon 14800) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1615 ; \delta_{\mathrm{H}} 5.1(1 \mathrm{H}, \mathrm{q})$ and $4.75(1 \mathrm{H}, \mathrm{m}) ; m / z 470$.

3 α-Acetoxy-15-aza-17a-homo-5 3 -cholest-8-en-24-one.-Na$\mathrm{BH}_{2} \mathrm{CN}(3.8 \mathrm{mg})$ was added to a stirred room temp. solution of the carbinolimine $17(14 \mathrm{mg})$ in AnalaR $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ with 2 drops of AcOH . After 30 min the solution was poured into $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ and worked-up in the usual way to give an oil which on SiO_{2} chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} ; \mathbf{9 : 1}\right)$ produced the allylamine (4 mg) as a colourless oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3400$;
$\delta_{\mathrm{H}} 4.7(1 \mathrm{H}, \mathrm{m}), 3.5(1 \mathrm{H}, \mathrm{m}), 3.2(1 \mathrm{H}, \mathrm{m})$ and $2.8(1 \mathrm{H}, \mathrm{m})$ (Found; $\mathrm{M}^{+}, 457.3556 . \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NO}_{3}$ requires $M, 457.3553$).

Conversion of 3α-Acetoxy-15-hydroxy-14,15-seco- 5β-cholest8 -ene-14,24-dione 14 to 3α-Acetoxy-15-bromo-14,15-seco- 5β -cholest-8-ene-14,24-dione 15.-A solution of $\mathrm{Ph}_{3} \mathrm{P}(284 \mathrm{mg})$ in THF ($5 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of N bromosuccinimide* (194 mg) in THF ($10 \mathrm{~cm}^{3}$) at room temp. After 10 min a white precipitate had formed and a solution of the alcohol $14(257 \mathrm{mg})$ in THF ($5 \mathrm{~cm}^{3}$) was added. $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ was added after a further 2 h and the mixture washed (water, $3 \times 80 \mathrm{~cm}^{3}$ and brine $50 \mathrm{~cm}^{3}$). Work-up in the usual way followed by SiO_{2} column chromatography (EtOAclight petroleum; 1:5) gave the bromide 15 (263 mg); m.p. 135$137^{\circ} \mathrm{C} ; \lambda_{\max } / \mathrm{nm} 249(\varepsilon 12400) ; \nu_{\max } / \mathrm{cm}^{-1} 1735,1710$ and $1660 ; \delta_{\mathrm{H}} 4.7(1 \mathrm{H}, \mathrm{m})$ and $3.25(2 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 457\left(\mathrm{M}^{+}-\mathrm{Br}\right)$.

Conversion of Bromide 15 into 3α-Acetoxy-15-azido-14,15-seco- 5β-cholest- 8 -ene-14,24-dione 16 . $-\mathrm{NaN}_{3}(1 \mathrm{~g})$ was added to a stirred solution of the bromide $15(263 \mathrm{mg})$ in $\mathrm{Me}_{2} \mathrm{NCHO}$ ($10 \mathrm{~cm}^{3}$) and water ($1 \mathrm{~cm}^{3}$) at room temp. The solution was stirred for 2 d and then poured into $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ and worked up in the usual way to give the azide $\mathbf{1 6}(247 \mathrm{mg})$ as a pale yellow oil, $\lambda_{\text {max }} / \mathrm{nm} 249$ ($\varepsilon 10100$); $v_{\text {max }} / \mathrm{cm}^{-1} 2100,1735,1710$ and $1660 ; \delta_{\mathrm{H}} 4.7(1 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{q}, J 6.3)$ and $3.00(1 \mathrm{H}, \mathrm{m}) ; m / z$ 500.
3α-Acetoxy-15-aza-17a-homo-5 β-cholesta-8,14-dien-24-one 18.-Lindlar catalyst (100 mg) was added to a stirred solution of the azide 16 (247 mg) in AnalaR $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ at room temp. and the mixture agitated under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 3 h . The catalyst was then filtered off and the solution evaporated. SiO_{2} column chromatography ($\mathrm{MeOH}-\mathrm{CHCl}_{3}$, 1:19) gave the imine 18 (145 mg), m.p. 138-142 ${ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }} / \mathrm{nm} 241$ and 276 ($\varepsilon 4400$ and 1900); $\lambda_{\max }+\mathrm{H}^{+} / \mathrm{nm} 273$ ($\varepsilon 5600$); $v_{\text {max }} / \mathrm{cm}^{-1} 1735,1715$ and 1620 ; $\delta_{\mathrm{H}} 4.75(1 \mathrm{H}, \mathrm{m}), 4.0(1 \mathrm{H}, \mathrm{m})$ and $3.50(1 \mathrm{H}, \mathrm{q})$ (Found: M^{+}, 455.3399. $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{3}$ requires $M, 455.3397$).
3α-Acetoxy-15-aza-17a-homo-5 3 -ergost- $8,14,24\left(24^{1}\right)$-triene 19.-BuLi ($1.6 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.5 \mathrm{~cm}^{3}$) was added dropwise to a
stirred suspension of methyl(triphenyl)phosphonium iodide $(286 \mathrm{mg})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. The solution was left to warm to room temp. and after 1 h the solution had become clear yellow. This solution was then added dropwise to a stirred solution of the imine $18(91 \mathrm{mg})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ under N_{2} at room temp. After 1 h the reaction was quenched with water ($10 \mathrm{~cm}^{3}$) and worked up in the usual way to give a colourless oil, which on SiO_{2} column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} ; 49: 1\right)$ yielded the imine $19(40 \mathrm{mg})$ as a white solid, $[\alpha]_{\mathrm{D}}-24$ (c 0.8); $\lambda_{\text {max }} / \mathrm{nm} 238$ ($\varepsilon \quad 10650$); $\lambda_{\text {max }}+\mathrm{H}^{+} / \mathrm{nm} 277$ ($\varepsilon 9000$); $v_{\text {max }} / \mathrm{cm}^{-1} 1715$ and 1620 ; $\delta_{\mathrm{H}} 4.75(2 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{m}), 3.5(1 \mathrm{H}, \mathrm{m})$, $2.00(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.00(6 \mathrm{H}, \mathrm{d})$ and $0.95(6 \mathrm{H}, \mathrm{d})$ (Found: $\mathrm{M}^{+}, 453.3607 . \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{2}$ requires $M, 453.3604$).

Acknowledgements

We thank the SERC and ICI Agrochemicals (which is part of ICI ple in the UK) for a CASE award and financial assistance.

References

1 J. W. Chamberlin, M. D. Chaney, S. Chen, P. V. Demarco, N. D. Jones and J. L. Occolowitz, J. Antibiot., 1974, 27, 992; L. D. Boeck, M. M. Hoehn, J. E. Westhead, R. K. Wolter and D. N. Thomas, J. Antibiot., 1975, 28, 95; K. H. Michel, R. L. Hamill, S. H. Larsen and R. H. Williams, J. Antibiot., 1975, 28, 102; R. S. Gordee and T. F. Butler, J. Antibiot., 1975, 28, 112.

2 J. D. Bu'Llock, K. Demnerova, W. J. Kilgour, F. Knauseder and A. Steinbuchel, Biotechnol. Lett., 1980, 2, 285.
3 P. R. Hays, W. D. Neal and L. W. Parks, Antimicrob. Agents Chemother., 1977. 12, 185; C. K. Bottema and L. W. Parks, Biochim. and Biophys. Acta, 1978, 531, 301.
4 D. H. R. Barton, X. Lusinichi, A. M. Mendez and P. Milliet, Tetrahedron, 1983, 39, 2201.
5 R. E. Dolle and L. I. Kruse, J. Chem. Soc., Chem. Commun., 1988, 133. 6 G. Aranda, M. Fetizon and N. Tayeb, Tetrahedron, 1985, 41, 5661.
7 R. Ray and D. S. Matteson, Tetrahedron Lett., 1980, 21, 449.
8 A. Brossi, F. Schenker and W. Leimgruber, Helv. Chim. Acta, 1964, 47, 2089.

[^4]
[^0]: $\dagger 3 \alpha, 7 \alpha, 12 \alpha$-Trihydroxy-5 β-cholan-24-oic acid.
 \ddagger The hydroxy ketone was accompanied by varying amounts of 8-en-
 15-one and 8(14)-en-15-one according to the base used.

[^1]: § 1,8-Diazabicyclo[5.4.0]undec-7-ene.
 IT $3 \alpha, 7 \alpha$-Dihydroxy- 5β-cholan-24-oic acid.
 || MM2 calculations confirm that removal of the 12 -acetate reduces the energy differences between the 7-ene and $\Delta 8(14)$-ene isomers from 2.2 to $0.9 \mathrm{kcal}(1 \mathrm{cal}=4.18 \mathrm{~J}$).

[^2]: * The diol dehydrated readily to a triene tentatively identified as the 8(14),9,15-compound.

[^3]: * 4-Dimethylaminopyridine.

[^4]: * 1-Bromopyrrolidine-2,5-dione.

