Conversion of Cholic Acids into Aza Steroids

Jason Hill,[#] James K. Sutherland ^{*,#} and Patrick Crowley^b

^a Chemistry Department, Victoria University of Manchester, M13 9PL, UK ^b ICI Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire, RG12 6EY, UK

Cholic and chenodeoxycholic acids have been transformed into analogues of the anti-fungal aza steroid A25822A *via* the 8(14)-ene and 8,14-diene derivatives.

The A25822 group of fungal metabolites isolated and characterised by the Lilly group¹ have been shown to exhibit antifungal activity under certain circumstances.² This activity has been traced to their inhibition of the 14-ene hydrogenation step of sterol biosynthesis.³ At the inception of our work the only synthetic studies published were those of the Barton group⁴ who prepared the aza steroid 1 from ergosterol. Since then Dolle and Kruse have described a synthesis of the 4,4-dimethyl compound.⁵

We wished to investigate whether cholic \dagger acid could be used as a source of aza steroids of this type. The Fetizon group ⁶ has described the conversion of methyl 3α , 12α -diacetoxychol-8(14)en-24-oate into the 8,14-diene **2** by reaction with Bu'OOH-SeO₂ and its further transformation into the 14-hydroxy-15-oxo compound. Since the preparation of this ketone proved to be capricious \ddagger and cleavage of ring *D* difficult we turned to reaction of the diene **2** with OsO₄-Me₃NO which gave a 1:1 mixture of 14,15-diols (80%). Oxidation with NaIO₄ gave the ketoaldehyde **7** (90%).

Reaction of the aldehyde 7 with NH₃-MeOH gave a variety of products from which the carbinolamine 8 (30%) could be isolated. The presence of the unsaturated imine was confirmed by the shift of λ_{max} from 242 nm (ε 10 300) to 282 nm (ε 10 100) on acidification. Attempts to reduce the carbinolamine 8 to the

azasteroid 9 with NaBH₃CN were unsuccessful, the allylamine 10 being obtained (92%). Direct oxidation of the amine 10 with Hg(OAc)₂ or Pb(OAc)₄ failed to form the azomethine, but the two step process ⁷ of *N*-chlorination with Bu'OCl followed by dehydrochlorination with DBU§ formed compound 9 (84%).⁸

Now that we had developed a method for the construction of the aza compound we endeavoured to apply it to a target more closely related to the natural products. The starting material was chenodeoxycholic acid ¶ which was converted to the 8(14)ene apo compound using the conditions previously described; however in this case the 8(14)-ene isomer was contaminated with the 7-ene compound. If After acetylation exposure of the mixture to Pt-H₂ converted it to pure 8(14)-ene material 11. Reaction of the acid with (COCl)₂ formed the acid chloride which was treated with Pr¹MgCl-CuCN to give ketone 12. Attempts to transform the enone into the 8,14-diene 3 using

 $^{+ 3\}alpha, 7\alpha, 12\alpha$ -Trihydroxy-5B-cholan-24-oic acid.

[‡] The hydroxy ketone was accompanied by varying amounts of 8-en-15-one and 8(14)-en-15-one according to the base used.

^{§ 1,8-}Diazabicyclo[5.4.0]undec-7-ene.

[¶] 3α , 7α -Dihydroxy-5 β -cholan-24-oic acid.

^{||} MM2 calculations confirm that removal of the 12-acetate reduces the energy differences between the 7-ene and $\Delta 8(14)$ -ene isomers from 2.2 to 0.9 kcal (1 cal = 4.18 J).

Bu'OOH-SeO₂ gave intractable materials, presumably due to interference by the side-chain ketone. Thus it was decided to introduce the diene first and then complete the side-chain. The known diene ester 4 was hydrolysed to the acid and acetylated with Ac₂O-pyridine. On aqueous work-up the acid 5 was obtained, but the bulk of the material from the reaction was present as the mixed anhydride 6. It was possible to hydrolyse the anhydride selectively, but in poor yield; however the anhydride could be converted into the acid chloride using (COCl)₂. Reaction of the acid chloride with PrⁱMgCl-CuCN gave the ketone 3.

The results of OsO_4 -Me₃NO oxidation of the diene 3 were disappointing since the 14,15-diol was obtained in poor yield, the major product being an unidentified ether. Stoichiometric OsO_4 oxidation gave the 14,15-diol (28%) which proved to be unstable.* We next turned to selective ozonolysis which had been used by Dolle and Kruse⁵ in a similar situation. Reaction of the diene with O₃ in CH₂Cl₂ at -78 °C followed by reduction of the reaction mixture with Zn-AcOH gave the ketoaldehyde 13 (23%) which was treated with NH₃ to form the carbinolamine 17 (25%). Reduction of the carbinolamine 17 as before gave the allylamine (29%). This succession of poor yields caused us to examine other routes from the ketoaldehyde to the imine. Dolle and Kruse⁵ had converted their ketoaldehyde to primary alcohol and thence to the unsaturated imine using (PhO)₂PON₃-(PrⁱOCON)₂-Ph₃P in an aza-Wittig reaction. The ketoaldehyde was reduced with $Bu'NH_2-BH_3$ in CH_2Cl_2 to the alcohol 14 (54%) but all attempts to form the imine 18 in one step failed so a well established route was adopted. Reaction of the alcohol with Ph_3P-N -bromosuccinimide gave the bromide 15 (90%) which with NaN_3-Me_2NCHO formed the azide 16 (100%); reduction of 16 with H_2 -Lindlar catalyst gave the imine 18 (64%). The synthesis was completely by Wittig reaction of 18 with CH_2PPh_3 to give the analogue 19.

Experimental

NMR spectra were measured in CDCl₃ at 300 MHz (J values in Hz), IR spectra as thin films, and UV spectra in EtOH. 'Usual work-up' implies extractions with an organic solvent, washing the combined extracts with brine, drying the organic solvent over Na₂SO₄, and concentration of the extract under reduced pressure.

Oxidation of Methyl 3α , 12α -Diacetoxy-5 β -chola-18,14-dien-24-oate 2.—OsO₄ (50 mg) in Bu'OH (1 cm³) was added dropwise to a solution of the diene 2 (383 mg) and Me₃NO (103 mg) in Bu'OH (20 cm³), water (5 cm³) and pyridine (1.2 cm³) at ambient temperature under N₂. After 1 h aqueous Na₂S₂O₅ (20%) was added to the dark red solution. Extraction with Et₂O (3 × 50 cm³) followed by work-up in the usual way gave a green oil which was chromatographed on SiO₂; elution with light petroleum (b.p. 60–80 °C)–EtOAc (1:1) gave the 14,15diols (340 mg) as a glass.

The diols (310 mg) and NaIO₄ (400 mg) were dissolved in MeOH (20 cm³) and water (10 cm³) and the solution left at ambient temperature for 3 h. A white precipitate formed which dissolved on the addition of water (50 cm³) and the resulting mixture was extracted with Et₂O (3 × 40 cm³). Work-up in the usual way gave an oil which solidified on trituration with light petroleum. Recrystallisation from MeOH–H₂O gave the *ketoaldehyde* 7 (298 mg, 90%), m.p. 137–141 °C; $\delta_{\rm H}$ 9.66 (1 H, s), 5.16 (1 H, q), 4.78 (1 H, m), 3.66 (3 H, s), 2.10 (3 H, s), 1.99 (3 H, s), 1.14 (3 H, s), 1.08 (3 H, s) and 0.84 (3 H, d); $\nu_{\rm max}/\rm{cm}^{-1}$ 1735, 1666 and 1624; $\lambda_{\rm max}/\rm{mm}$ 248 (ϵ 8500) (Found: C, 66.9; H, 8.1. C₂₉H₄₂O₈ requires C, 67.2; H, 8.1%).

Reaction of Methyl 3α , 12α -Diacetoxy-14, 15-dioxo-14, 15-seco-5 β -chola-8, 14-dien-24-oate 7 with NH₃.—Aqueous ammonia (d 0.880; 0.1 cm³) was added to the aldehyde 7 (55 mg) in MeOH (1.5 cm³). After 8 h water (20 cm³) was added and the mixture extracted with Et₂O (3 × 10 cm³). Concentration of the dried extract gave an oil which was chromatographed on SiO₂; elution with light petroleum (b.p. 60–80 °C)—EtOAc (1:1) gave the carbinolamine **8** (16 mg, 30%); $\delta_{\rm H}$ 5.32 (1 H, m), 5.10 (1 H, q), 4.80 (1 H, m), 2.02 (3 H, s), 2.00 (3 H, s), 1.14 (3 H, s), 1.10 (3 H, s) and 0.86 (3 H, d) (Found: M⁺, 517.3041. C₂₉H₄₃O₇ requires *M*, 517.3036).

Reduction of Methyl 3α , 12α -Diacetoxy-16-hydroxy-15-aza-17a-homo-5 β -chola-8, 14-dien-24-oate 8.—NaBH₃CN (10 mg) was added to the carbinolamine 8 (16 mg) in MeOH (1 cm³). After 1 h the mixture was diluted with water (10 cm³) and extracted with Et₂O (2 × 10 cm³). The extract was washed with aqueous NaHCO₃, dried and concentrated to give the amine 10 as an oil (15 mg); $\delta_{\rm H}$ 0.81 (3 H, d), 0.86 (3 H, s), 1.00 (3 H, s), 2.00 (3 H, s), 2.06 (3 H, s), 3.25 (2 H, m), 3.66 (3 H, s), 3.80 (1 H, m), 4.76 (1 H, m) and 5.22 (1 H, d) (Found: M⁺, 503.3245. C₂₉H₄₅NO₆ requires *M*, 503.3243).

Methyl 3α , 12α -Diacetoxy-5-aza-17a-homo-5 β -chola-8, 14-dien-24-oate 9.—Bu'OCl in Et₂O (10 cm³, 1 mol dm⁻³) was added to the amine 10 (5 mg) in Et₂O (1 cm³). After 1 h in Et₂O (10

^{*} The diol dehydrated readily to a triene tentatively identified as the 8(14),9,15-compound.

cm³) was added and after washing with aqueous NaHCO₃ the dried solution was concentrated to give the *N*-chloro compound (5 mg). This was dissolved in CH₂Cl₂ (1 cm³) and DBU (50 cm³) added. After 30 min CH₂Cl₂ (10 cm³) was added and the solution worked up in the usual way to give an oil which was chromatographed on SiO₂; elution with light petroleum (b.p. 60–80 °C)-EtOAc (1:1) gave the *imine* **9** (4 mg) as an oil; λ_{max}/mm 242 (ε 10 300); $\lambda_{max} + H^+/mm$ 282 (ε 10 100) (Found: M⁺, 501.3091. C₂₉H₄₃NO₆ requires *M*, 501.3088).

3α-Acetoxy-5β-chol-8(14)-en-24-oic Acid 11.—Apochenodeoxycholic acid (9.36 g) in AcOH (150 cm³) containing H₂SO₄ (0.5 cm³, conc.) and Ac₂O (5 cm³) was stirred at room temp. for 4 h. The reaction mixture was then poured into EtOAc (200 cm³) and worked up in the usual way, to give an orange solid (11.03 g). SiO₂ column chromatography (35% EtOAc-hexane; 7:13) gave the acetates as pale yellow crystals. The acetates in AcOH (50 cm³) containing PtO₂ were shaken under an H₂ atmosphere for 24 h. The Pt was filtered off and the filtrate evaporated to give the pure (14)-ene acid 11 (7.21 g), m.p. 120– 124 °C (Et₂O); $[\alpha]_D$ + 57 (c 1.0); v_{max} /cm⁻¹ 2940, 2870, 1740 and 1710; δ_H 4.75 (1 H, m), 2.0 (3 H, s), 1.0 (3 H, d), 0.85 (3 H, s), 0.8 (3 H, s) (Found: C, 75.3; H, 10.0 C₂₆H₄₀O₄ requires C, 75.0; H, 9.6%).

 3α -Acetoxy-5 β -cholest-8(14)-en-24-one 12.—(COCl)₂ (168 mm³) was added to a stirred solution of the acid 11 (410 mg) in PhMe (20 cm³) at room temp. Once effervescence had stopped the orange solution was evaporated to give the acid chloride (405 mg) as an orange solid, ν_{max}/cm^{-1} 1740. PrⁱMgCl in Et₂O (2 mol dm⁻³; 9.2 cm³) was added to a stirred

PrⁱMgCl in Et₂O (2 mol dm⁻³; 9.2 cm³) was added to a stirred suspension of CuCN (817 mg) in tetrahydrofuran (THF) (40 cm³) under N₂ at -78 °C. The solution was then warmed to 0 °C. When clear, the solution was recooled to -78 °C and the acid chloride (2.055 g) in THF (10 cm³) was added. The mixture was stirred for 15 min and then MeOH (20 cm³) added at -78 °C. After the mixture had warmed to room temp. Et₂O (150 cm³) and water (100 cm³) were added and the resulting suspension was filtered through Celite. Work-up in the usual way followed by SiO₂ column chromatography (hexane-EtOAc; 9:1) furnished the *ketone* **12** (1.449 g); m.p. 95–97 °C (hexane); [α]_D + 72 (c 1.2); ν_{max}/cm^{-1} 1740 and 1715; δ_{H} 4.7 (1 H, m), 2.0 (3 H, s), 1.05 (6 H, d), 0.9 (3 H) and 0.8 (3 H); m/z 442 (Found: C, 79.1; H, 10.7. C₂₉H₄₆O₃ requires C, 78.7; H, 10.4%).

 3α -Hydroxy-5 β -chola-8,14-dien-24-oic Acid.—LiOH (1 g) was added to a stirred solution of the diene 4 (2.03 g) in AnalaR MeOH (90 cm³) and water (30 cm³) at room temp. After 48 h a white precipitate had formed and the suspension was acidified with HCl (3 mol dm⁻³) to pH 2. The precipitate was then filtered off, washed with water (4 × 50 cm³) amd dried to give the acid (1.625 g); m.p. 149–151 °C (Me₂CO–H₂O); [α]_D –20 (c 2.0); λ_{max} /nm 247 (ε 17 125); ν_{max} /cm⁻¹ 3600–2450 and 1710; δ_{H} 5.3 (1 H, br s), 3.65 (3 H, s), 1.05 (3 H, s), 0.95 (3 H, d) and 0.8 (3 H, s); *m*/z 372.

 3α -Acetoxy-5 β -chola-8,14-dien-24-oic Acid 5.—Ac₂O (60 cm³) was added dropwise to a stirred solution of 3α -hydroxy-5 β -chol-8,14-dienoic acid (202 mg), pyridine (0.5 cm³) and DMAP* (20 mg) in CH₂Cl₂ (10 cm³). After 3 h the reaction mixture was diluted further with CH₂Cl₂ (30 cm³) and washed with water (3 × 30 cm³). Work-up in the usual way gave a pale yellow oil, purified by SiO₂ column chromatography (EtOAc-hexane 3:7) to give the acid 5 (52 mg) as a colourless oil; λ_{max}/nm 246 (ϵ 17 100); ν_{max}/cm^{-1} 3400–2600; $\delta_{\rm H}$ 5.3 (1 H, s), 4.7 (1 H, m), 2.0 (3 H, s), 1.1 (3 H, s), 1.0 (3 H, d) and 0.85 (3 H, s); m/z 414.

 3α -Acetoxy-5 β -cholesta-8,14-dien-24-one 3.—Pyridine (6 cm³) was added dropwise to a stirred suspension of 3α -hydroxy-5 β -chola-8,14-dienoic acid (1.6 g) in CH₂Cl₂ (50 cm³) at room temp. Ac₂O (5 cm³) was then added once the suspension had dissolved. After 1.5 h the solution was washed with saturated aqueous NaHCO₃ and worked up in the usual way to give a colourless oil. This material was then dissolved in PhMe (30 cm³) and (COCl)₂ (3 cm³) was added. Once effervescence had stopped, evaporation yielded the crude acid chloride (1.792 g) as orange crystals.

PrⁱMgCl (2 mol dm⁻³ in Et₂O; 8 cm³) was added to a stirred suspension of CuCN (716 mg) in THF (40 cm³) at -78 °C under N₂. The mixture was warmed to 0 °C and upon dissolution of all the material was cooled to -78 °C; a solution of the acid chloride (1.792 g) in THF (10 cm³) was then added. After 15 min MeOH (20 cm³) was added at -78 °C and the mixture warmed to ambient temperature. Et₂O (150 cm³) and water (100 cm³) were added and the mixture filtered through Celite. Work-up in the usual way gave an oil, purified by SiO₂ chromatography (EtOAc-hexane 1:10) to give the *ketone* **3** (1.515 g) m.p. 66–67 °C (hexane); λ_{max}/nm 247 (ε 17 300); ν_{max}/cm⁻¹ 1735 and 1715; δ_H 5.3 (1 H, s), 4.7 (1 H, m), 2.0 (3 H, s), 1.1 (3 H, s), 1.05 (6 H, d), 0.9 (3 H, d) and 0.8 (3 H, s) (Found: C, 79.5; H, 10.4. C₂₉H₄₄O₃ requires C, 79.1; H, 10.0%).

Ozonolysis of the Diene 3.—The ketone 3 (1.4 g) dissolved in CH₂Cl₂ (350 cm³) containing Sudan III (5 mg) was cooled to -78 °C and O₃ passed until the solution was colourless. Zn dust (10 g) and AcOH (30 cm³) were then added and the mixture warmed to ambient temp. After 2 h the mixture was filtered and the filtrate concentrated to give an oil, which was chromatographed (SiO₂, 1:3 EtOAc-light petroleum) to give the ketoaldehyde 13 (368 mg), λ_{max}/nm 250 (ε 10 200); ν_{max}/cm^{-1} 1730, 1655 and 1620; $\delta_{\rm H}$ 9.6 (1 H, s), 4.75 (1 H, m), 2.00 (3 H, s), 1.10 (6 H, s), 1.08 (3 H, s) and 0.90 (3 H, d); m/z 490 and 472.

Reduction of 3α -Acetoxy-14,15-seco-5 β -cholest-8-ene-14,15,-24-trione 13.—To a stirred solution of trione 13 (475 mg) in CH₂Cl₂ (20 cm³) at 0 °C Bu'NH₂–BH₃ was added. After 1 h HCl (1 mol dm⁻³; 1 cm³) was added followed by work-up in the usual way to give an oil which on SiO₂ column chromatography (EtOAc-light petroleum, 1:1) furnished the alcohol 14 (275 mg) as a colourless oil, λ_{max}/nm 250; ν_{max}/cm^{-1} 3480, 1735 and 1710; $\delta_{\rm H}$ 4.7 (1 H, m) and 3.35 (2 H, m).

3α-Acetoxy-16-hydroxy-15-aza-17a-homo-5β-cholesta-8,14diene-24-one 17.—To a stirred room temp. solution of the trione 13 (71 mg) in AnalaR MeOH (10 cm³) NH₃ (d 0.88) was added dropwise until no starting material remained. The solution was then poured into water (100 cm³) and worked up in the usual way to give a pale yellow brown oil (60 mg), which on SiO₃ column chromatography (EtOAc-hexane, 4:6) furnished the carbinolamine 17 (16 mg) as a colourless oil, λ_{max}/nm 243 (ε 14 600), $\lambda_{max} + H^+/nm$ 280 (ε 14 800); ν_{max}/cm^{-1} 1615; $\delta_{\rm H}$ 5.1 (1 H, q) and 4.75 (1 H, m); m/z 470.

 3α -Acetoxy-15-aza-17a-homo-5 β -cholest-8-en-24-one.—Na-BH₂CN (3.8 mg) was added to a stirred room temp. solution of the carbinolimine 17 (14 mg) in AnalaR MeOH (2 cm³) with 2 drops of AcOH. After 30 min the solution was poured into Et₂O (50 cm³) and worked-up in the usual way to give an oil which on SiO₂ chromatography (CH₂Cl₂-MeOH; 9:1) produced the *allylamine* (4 mg) as a colourless oil, v_{max}/cm^{-1} 3400;

^{* 4-}Dimethylaminopyridine.

 $\delta_{\rm H}$ 4.7 (1 H, m), 3.5 (1 H, m), 3.2 (1 H, m) and 2.8 (1 H, m) (Found; M⁺, 457.3556. C₂₉H₄₇NO₃ requires *M*, 457.3553).

Conversion of 3α -Acetoxy-15-hydroxy-14,15-seco-5 β -cholest-8-ene-14,24-dione 14 to 3α -Acetoxy-15-bromo-14,15-seco-5 β cholest-8-ene-14,24-dione 15.—A solution of Ph₃P (284 mg) in THF (5 cm³) was added dropwise to a stirred solution of *N*bromosuccinimide* (194 mg) in THF (10 cm³) at room temp. After 10 min a white precipitate had formed and a solution of the alcohol 14 (257 mg) in THF (5 cm³) was added. Et₂O (100 cm³) was added after a further 2 h and the mixture washed (water, 3 × 80 cm³ and brine 50 cm³). Work-up in the usual way followed by SiO₂ column chromatography (EtOAclight petroleum; 1:5) gave the bromide 15 (263 mg); m.p. 135-137 °C; λ_{max}/nm 249 (ϵ 12 400); v_{max}/cm^{-1} 1735, 1710 and 1660; $\delta_{\rm H}$ 4.7 (1 H, m) and 3.25 (2 H, m); m/z 457 (M⁺ – Br).

Conversion of Bromide 15 into 3α -Acetoxy-15-azido-14,15seco-5 β -cholest-8-ene-14,24-dione 16.—NaN₃ (1 g) was added to a stirred solution of the bromide 15 (263 mg) in Me₂NCHO (10 cm³) and water (1 cm³) at room temp. The solution was stirred for 2 d and then poured into Et₂O (50 cm³) and worked up in the usual way to give the azide 16 (247 mg) as a pale yellow oil, λ_{max}/nm 249 (ε 10 100); ν_{max}/cm^{-1} 2100, 1735, 1710 and 1660; $\delta_{\rm H}$ 4.7 (1 H, m), 3.20 (1 H, q, J 6.3) and 3.00 (1 H, m); m/z 500.

3α-Acetoxy-15-aza-17a-homo-5β-cholesta-8,14-dien-24-one **18**.—Lindlar catalyst (100 mg) was added to a stirred solution of the azide **16** (247 mg) in AnalaR MeOH (15 cm³) at room temp. and the mixture agitated under H₂ (1 atm) for 3 h. The catalyst was then filtered off and the solution evaporated. SiO₂ column chromatography (MeOH–CHCl₃, 1:19) gave the *imine* **18** (145 mg), m.p. 138–142 °C; λ_{max} /nm 241 and 276 (ε 4400 and 1900); λ_{max} + H⁺/nm 273 (ε 5600); ν_{max} /cm⁻¹ 1735, 1715 and 1620; $\delta_{\rm H}$ 4.75 (1 H, m), 4.0 (1 H, m) and 3.50 (1 H, q) (Found: M⁺, 455.3399. C₂₉H₄₅NO₃ requires *M*, 455.3397).

 3α -Acetoxy-15-aza-17a-homo-5 β -ergost-8,14,24(24¹)-triene 19.—BuLi (1.6 mol dm⁻³; 0.5 cm³) was added dropwise to a stirred suspension of methyl(triphenyl)phosphonium iodide (286 mg) in THF (10 cm³) at -78 °C under N₂. The solution was left to warm to room temp. and after 1 h the solution had become clear yellow. This solution was then added dropwise to a stirred solution of the imine **18** (91 mg) in THF (10 cm³) under N₂ at room temp. After 1 h the reaction was quenched with water (10 cm³) and worked up in the usual way to give a colourless oil, which on SiO₂ column chromatography (CH₂Cl₂-MeOH; 49:1) yielded the *imine* **19** (40 mg) as a white solid, $[\alpha]_D -24$ (c 0.8); $\lambda_{max}/nm 238$ ($\varepsilon 10650$); $\lambda_{max} + H^+/nm 277$ ($\varepsilon 9000$); v_{max}/cm^{-1} 1715 and 1620; $\delta_H 4.75$ (2 H, m), 4.65 (1 H, m), 4.00 (1 H, m), 3.5 (1 H, m), 2.00 (3 H, s), 1.10 (3 H, s), 1.00 (6 H, d) and 0.95 (6 H, d) (Found: M⁺, 453.3607. C₃₀H₄₇NO₂ requires *M*, 453.3604).

Acknowledgements

We thank the SERC and ICI Agrochemicals (which is part of ICI plc in the UK) for a CASE award and financial assistance.

References

- J. W. Chamberlin, M. D. Chaney, S. Chen, P. V. Demarco, N. D. Jones and J. L. Occolowitz, J. Antibiot., 1974, 27, 992; L. D. Boeck, M. M. Hoehn, J. E. Westhead, R. K. Wolter and D. N. Thomas, J. Antibiot., 1975, 28, 95; K. H. Michel, R. L. Hamill, S. H. Larsen and R. H. Williams, J. Antibiot., 1975, 28, 102; R. S. Gordee and T. F. Butler, J. Antibiot., 1975, 28, 112.
- 2 J. D. Bu'Llock, K. Demnerova, W. J. Kilgour, F. Knauseder and A. Steinbuchel, *Biotechnol. Lett.*, 1980, **2**, 285.
- 3 P. R. Hays, W. D. Neal and L. W. Parks, Antimicrob. Agents Chemother., 1977, 12, 185; C. K. Bottema and L. W. Parks, Biochim. and Biophys. Acta, 1978, 531, 301.
- 4 D. H. R. Barton, X. Lusinichi, A. M. Mendez and P. Milliet, Tetrahedron, 1983, 39, 2201.
- 5 R. E. Dolle and L. I. Kruse, J. Chem. Soc., Chem. Commun., 1988, 133.
- 6 G. Aranda, M. Fetizon and N. Tayeb, Tetrahedron, 1985, 41, 5661.
- 7 R. Ray and D. S. Matteson, Tetrahedron Lett., 1980, 21, 449
- 8 A. Brossi, F. Schenker and W. Leimgruber, Helv. Chim. Acta, 1964, 47, 2089.

Paper 2/001201 Received 10th January 1992 Accepted 24th January 1992

^{* 1-}Bromopyrrolidine-2,5-dione.